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Gravito-inertial fields and relativity 

H. G. L. COSTER and J. R. SHEPANSKI 
School of Physics, The University of New South Wales, Sydney, Australia 
MS. receiaed 10th June 1968, in recised form 22nd August 1968 

Abstract. Gravitational and inertial field equations of a Maxwellian form are 
established which lead to a consistent theory of gravitation. The new approach to 
dynamics arising from the field theory is in agreement with the theory of special 
relativity, while producing a fresh insight into some of the relativistic phenomena. 

1. Introduction 
On Einstein’s theory of general relativity the gravitational field appears to occupy a 

very special position: unlike the very much stronger electromagnetic field, it is fully 
incorporated into the geometrical structure of space-time. In  contrast with the special 
theory of relativity, the general theory, although widely accepted, has not borne many 
immediately applicable results. 

Recently, Scott (1967) has shown that it is feasible to set up gravitational field equations 
based on a flat (Galilean) space-time by analogy with the electrodynamics of moving 
media. The present communication is concerned with another approach in which field 
equations are established in a Maxwellian form. 

The new approach is capable of correctly predicting the precession of the perihelion of 
Mercury while the gravitational red shift and the bending of a light ray in a gravitational 
field can be obtained in the usual way. It is, therefore, consistent in these respects, as is 
Scott’s, with the findings of the general theory. 

It can be shown (Msller 1952) that the Maxwellian-type gravitational equations may be 
obtained, as an approximation, from the general theory of relativity on applying a 
linearization procedure. Basically, however, the new theory avoids the complications of 
the general theory and introduces instead, new fields to which we shall refer here as the 
gravito-inertial fields, in analogy with the electromagnetic fields. 

In  the present paper we shall demonstrate the consistency of our approach with the 
special theory and attempt to shed some new light on the interpretation of the variation of 
mass with velocity. Also, we shall verify, on the model theory, the applicability of the 
principle of equivalence and establish the possible existence of new gravitational inertial 
effects not normally accounted for by the theory of relativity. 

2. The gravito-inertial field equations 
The Maxwellian-type field equations, referred to in the introduction, are constructed 

here by postulating analogous roles for the field strengths $2 and 9, of the gravitational and 
inertial fields (see below), to the respective field strengths E and N, of the electric and 
magnetic fields. We shall confine our considerations to the free space only. 

The vectors $2 and 9 are, therefore, taken to satisfy the following field equations: 

1 

Q O  
(iii) v , $9 = - - p g  

This is in complete analogy with the Maxwellian equations for the electromagnetic 
field. 

If we assume that the analogue of the electric charge here is the gravitational mass of a 
particle, whether moving or not, relative to the observer, then we may at once identify $2 
as the gravitational attractive force per unit mass. This means that the gravitational force 

2 2  
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on a test particle of mass m', due to a gravitational field strength $3, is given by 

F = m' $2. (2) 
The  quantity cto, the gravitic permittivity of free space, is then given, in terms of the 

universal constant of gravitation y ,  as 

1 
t ( O = - N  1.19 x lo9 m.k.s. 

G = a o %  

477-Y 
The  quantity G 

(3) 

(4) 
may then be called the gravitic displacement or gravitic induction. 

(l(iii)) is self-evident from the invariantly attractive nature of %. 

through the identification 

The  quantity pg is simply the local gravitational mass density and the negative sign in 

The  inertial field strength 9 is associated with the particle momentum density 72: 

( 5 )  
8% 

n r V x 9 + a 0 -  =j,. 

TC has therefore a component due to the analogue of the magnetomotive force and a 
component due to the gravitic displacement current. 

The  force on a particle of mass m', moving with a velocity v in a system in which there 
exists a gravito-inertial field, is then given by 

at 

where 
F = m f ( s +  v x  I )  

I = So$. 

I may be called the inertial induction, while the quantity S o  is the inertial permeability of 
free space. 

The choice of signs in equations (l(i)) and (l(ii)) is determined from the following: 
(i) The  divergence of (l(ii)) gives 

%so. j ,  = o 
2t 

a continuity-type equation identifying j ,  with the gravitational mass current density. 
(ii) Equations (l(ii)) also yield 

and 

where 
c f  = (S0a,)-1'2 

These equations represent wave propagation of the % and 3 fields with the speed c'. 
S, and Si are source functions for these inhomogeneous wave equations, and are given by 

and 

s,=- vpg+-- 
NO ( c12 "3 at 

The equations (9) and (10) are in accord with the current ideas on gravitational propaga- 
tion. It will be shown in the next section that c' also represents the limiting value of the 
speed of a particle, and hence c' = c. 
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3. Mass and gravito-inertial interactions 
Let us consider a material particle moving with a velocity U relative to an observer 0 

(cf. figure 1). The present location of the particle from 0 is given bythe position vector y o ,  
while r is the corresponding retarded position vector. 

0 

Figure 1. 

Let the gravitational mass of the particle, as measured in its own rest frame, be m,. 
Taking due account of the finite speed c' of propagation for the gravito-inertial field, we 

can at once write down the retarded scalar and vector potentials at 0 due to the particle 
(cf. the electromagnetic theory) : 

1 1 
t,!~~ -m, 

4m0 r -  r . u l c '  

$ 0  U 

4n r - r  .u /c t  
Yi = +-?no (13) 

The  corresponding gravitic field strength @ and inertial induction I are then given by 

and 

Equations (14) with (12) and (13) yield 

and 

(14a) 

(14b 

(Note again the analogy with the electromagnetic treatment.) 

to a locally evaluated effective gravitational mass : 
The gravitational field, as determined by the observer at 0, does, therefore, correspond 

Interpretation of equation (17) will be postponed until the value of c' has been deter- 
mined. 
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In  view of the relationship (5), it is natural to define the effectice inertial mass density 
pi by writing 

if the mass distribution contributing to pi is moving locally with the velocity U relative to 
the observer. 

From (16) ~ 7 e  then have 
1 

so that, when the velocity U is constant for the whole mass distribution, 

Hence, on comparing (20) with (18), we conclude that, at every point of the distribution, 

Thus the integral of pi over the volume in question, yielding the effective (inertial) mass of 
the distribution, must, on this theory, be identical with the corresponding effective 
(gravitational) mass, in accordance with the principle of equivalence. 

An insight into the very concept of the inertia of a particle can be obtained by observing 
that when a particle is accelerated an induced gravitic field arises which is given by 

P g  Pi. 

ayi g=-----. 
F t  

This induced field produces a reaction on the particle, so that an external force must be 

Substitution of Yi from equation (13) shows that this reaction force for a slowly 
present in order to maintain the accelerated motion. 

moving particle is proportional to the acceleration. 

4. Directional aspects of the gravito-inertial field and limiting particle speed 
It can be readily seen from (17) that the apparent mass deduced locally from the 

observed gravitic field is not only a function of velocity, but also depends on the direction 
of observation as long as U f 0. There are two cases of particular interest: 

(i) When 

(21a) 

and 
(ii) when 

I t  is thus seen from (2la) that the apparent gravitational (and inertial) mass, asviewed in 
a direction normal to its velocity, increases with U in a manner entirely analogous to that 
predicted by the special theory of relativity. From (21b) it follows that, in the longitudinal 
direction, the gravitational and inertial interactions decrease as U -+d. This is a very 
important result since it shows that any such interaction, which may be responsible for 
increasing the velocity of the particle in this direction, does, in fact, approach zero as 
U -+ c’. This automatically imposes an upper limit to the particle speed. 

The same upper limit ct on the value of U is also imposed by the catastrophic increase 
in the particle mass m ,  viewed transversely (cf. equation (21)). 

The special theory of relativity gives an upper limit to the particle speed, equal to c, 
the invariant propagation speed of all electromagnetic signals in cacuo. 
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If the dynamics of the particle is preserved in all inertial frames, then the field 
equations (1) must retain their form in all such systems. The  field propagation speed c’ 
then becomes the invariant upper limit to the particle speed. 

Since there can exist only one such invariant limiting speed, we conclude that 

c = c ‘  = ( M o 8 , ) - 1 ’ 2 .  (22) 
The result (22) has two important consequences : 
( a )  The relationship (21a) becomes identical with that predicted by the special theory. 

This suggests a new interpretation for the relativistic mass increase. This is discussed in 
detail below. 

( b )  Since c is now the speed of propagation of the gravito-inertial signals in free space, 
an agreement with the current ideas on the subject of propagation of gravitational fields is 
assured, while a more detailed description of such propagation becomes feasible on our 
model. 

We must conclude from (15) and (16) that as zi + c, the gravito-inertial field tends to be 
confined to the transverse plane passing through the particle. Since the electromagnetic 
field of a charged particle behaves in a similar fashion, it is clear that there is no way in 
which one could directly interact longitudinally with a particle whose speed nears c. 

5. Dynamical mass, momentum and energy relations 

ent on the direction of observation (equation (If)). 

of the gravitic field: 

In  a previous section it was shown that the local evaluation of a particle mass is depend- 

The integral form of equation (l(iii)) gives the following expression for the Gauss law 

The total dynamical mass of the field distribution can then be obtained by performing 
the integration in (23)  over a surface surrounding the particle in its retarded position. 
This requires a knowledge of $3 in terms of this retarded position. For a given retarded 
position the value of ro,  which gives the present position of the particle from the point of 
observation at any instant, is dependent on the direction of observation. The functional 
relationship between the present position and the direction of observation, for a given 
retarded position, can be calculated using the invariance of the propagation of the gravito- 
inertial field. The results also correspond to a Lorentz length contraction in the direction 
of motion and could be obtained in a manner entirely analogous to the corresponding 
problem for electromagnetic fields. 

Thus, if R, is the value of the radial distance r ,  of the particle when in the transverse 
direction, it is easy to show that 

where ro is the radial distance (of the present position) measured in any particular 
direction. 

With the transformation (24) and using (15), the integral in (23) yields 
212 -112 

m = m, ( I -  ,.) (25)  

It should be pointed out that, if the expression for B in terms of the present position 
from any one given observation point (i.e. equation (15)) is substituted directly into (23),  
the integration yields just mo. This is not surprising since in doing so it is intrinsically 
assumed that all observers on a sphere of radius Y ,  see the particle in the same present 
position for a given retarded position. This is clearly only possible when U = 0. 
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I n  the derivation of equation (17), from (14a), giving the mass variation with velocity, it 
is possible to identify two distinct contributions. These arise, respectively, from the 
negative gradient of the scalar potential y&. and the time variation of the vector potential Yi. 

Thus the integral in equation (23 )  consists of two terms. The total dynamical mass m 
given in equation (25) may therefore be written as 

where 

and 

m = m,$m, 
u2 -3/2 

m@ = m, (I - 2) 
- mou2 

C 

Hence the effect of the time variation of the vector potential Yi is to reduce the rate of 
mass increase with speed. 

It is interesting to note that m,, is identical with what was sometimes referred to in the 
past as the longitudinal mass. Its origin lies in the propagation of the gravitic field. 

The  total momentum can be obtained in a similar fashion from equations (20) and (23) 
and using the transformation (24). Thus 

= - a , / ( 9 . d S ) u  

u2 -l/2 

= mo (I - ,.) u = mu 

which is the normal relativistic expression for the particle momentum. 
Equation (28), of course, yields directly the total energy E 

E = mc2. (29) 
The results predicted by the theory, which were derived without recourse to the 

results of the special theory of relativity, are in full agreement with that theory. The  new 
approach, however, gives a completely new interpretation of relativistic phenomena. 
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